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a b s t r a c t

In this work we investigate families of compact Lorentzian manifolds in dimension four.
We show that every lightlike geodesic on such spaces is periodic, while there are closed
and non-closed spacelike and timelike geodesics. Also their isometry groups are computed.
We also show that there is a non trivial action by isometries of H3(R) on the nilmanifold
S1 × (Γk\H3(R)) for Γk, a lattice of H3(R).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to their relations with general relativity Lorentzian manifolds, that is manifolds endowed with metric tensors of
index 1, play a special role in pseudo-Riemannian geometry. Timelike and null geodesics represent, respectively, free falling
particles and light rays. Isometric actions and the existence problem of closed geodesics are two of the most popular topics
of research in the last time. In this work by a closed geodesic we mean a periodic geodesic.

The known results developed in the field have made use of several techniques including variational and topological
methods, Lie theory, etc. (See for instance [1–5] and references therein.) After the classification of simply connected Lie
groups acting locally faithfully by isometries on a compact Lorentz manifold [6,7] some other questions concerning the
geometric implications of such actions arise in a natural way, specially in the noncompact case (see [8]). In [9] Melnick
investigated the isometric actions of Heisenberg groups on compact Lorentzian manifolds, showing a codimension one
action of the Heisenberg Lie group H3(R) on the Lorentzian compact solvmanifold M = Γ \G, where G = R n H3(R) is
a solvable Lie group, called the oscillator group.

The main purpose of this work is to analyze these topics more deeply in a family of examples. We study the geometry
of families of compact Lorentzian manifolds in dimension four: Mk,i = G/Λk,i, which are stationary, that is, they admit an
everywhere timelike Killing vector field. This implies the existence of closed timelike geodesics (see [10]).
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In this work we obtain:
• Every lightlike geodesic on any compact space Mk,i is periodic, while there are periodic and injective timelike and

spacelike geodesics.
• The isometry groups of these compact spaces have a countable amount of connected components (see [11]).

As already mentioned the existence question of closed geodesics on a compact Lorentzian manifold is a classical topic in
Lorentzian geometry. In this context the results above relative to null geodesics are surprising in a quite different situation
of those in [12] and therefore they should induce new research in the topic.

We start with an isometric codimension one action by isometries of the Heisenberg Lie group H3(R) on compact
nilmanifolds Λk\N where N = R × H3(R). The starting point is the existence of an isometry between the Lorentzian Lie
group G which is solvable and the Lie group N which is 2-step nilpotent [13]. This reveals that the existence of actions by
isometries coming fromnon-isomorphic groups does not distinguish the isometry class of the Lorentzianmanifold. However
while the Lorentzian metric on G is bi-invariant, that one on N is only left-invariant. Furthermore there is a family of groups
Λk which are cocompact lattices of G and also of N so that every quotient Λk\N is diffeomorphic to Λk\G and the metrics
induced to the quotients give rise to an isometry between the compact spaces (Λk\N, gN) and (Λk\G, gG). It is clear that as
an ideal of G, the Heisenberg Lie group H3 acts isometrically on Λk\G by translations on the right. Therefore the Heisenberg
Lie group also acts on Λk\N by isometries. The Lie group N is already known in the literature: it is related to the known
Kodaira–Thurston manifold. One of the advantages of the nilmanifold model arises from Nomizu’s Theorem: the de Rham
cohomology can be read off from the cohomology of the Lie algebra of N .

The solvable group G admits more cocompact lattices Λk,i which are not isomorphic to the family above. We explicitly
write the full isometry group of Gwhich is proved to be non-compact. Andmaking use of results which relate the isometries
on the quotients with those on Gwe compute Iso(Mk,i) the group of isometries of the compact solvmanifoldsMk,i = Λk,i\G.

We complete the work with the study of the periodic geodesics on the compact Lorentzian solvmanifolds. It should be
noticed that all the Lorentzian manifolds here are naturally reductive spaces. We notice that together with the motivations
coming from Lorentzian geometry an active research is given for g.o. spaces (see for instance [14–17]). The compact
Lorentzian spacesMk,i constitute the first examples (known to us) of compact spaces in dimension fourwhere every lightlike
geodesic is periodic.

2. Lorentzian nilmanifolds and actions

Let H3(R) denote the Heisenberg Lie group of dimension three, whichmodeled overR3 has amultiplicationmap given by

(x, y, z) · (x′, y′, z ′) =


x + x′, y + y′, z + z ′

+
1
2
(xy′

− x′y)


.

Let N denote the nilpotent Lie group R × H3(R), which turns into a pseudo-Riemannian manifold modeled on R4 with
the following Lorentzian metric

g = dt

dz +

1
2
ydx −

1
2
xdy


+ dx2 + dy2 (1)

where (t, x, y, z) are usual coordinates for R4. Denote v = (x, y) and for each (t1, v1, z1) ∈ R4 consider the following
differentiable function on R4:

LN(t1,v1,z1)(t2, v2, z2) =


t1 + t2, v1 + v2, z1 + z2 +

1
2
vτ
1 Jv2


(2)

where J is the linear map on R2 given by the matrix

J =


0 1

−1 0


. (3)

Clearly LN is the translation on the left on N by the element (t1, v1, z1) and it is not hard to see that the metric g is invariant
under the left-translations LN(t1,v1,z1). A basis of left-invariant vector fields at p = (t, x, y, z) is

e0(p) = ∂t |p

e1(p) = ∂x|p −
1
2
y ∂z


p

e2(p) = ∂y|p +
1
2
x ∂z


p

e3(p) = ∂z |p

and the invariant Lorentzian metric g satisfies
g(e0, e3) = g(e1, e1) = g(e2, e2) = 1.
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Particular examples of closed subgroups are lattices. A lattice of a Lie group G is a discrete subgroup Γ such that the
quotient space G/Γ or Γ \G is compact.

For every k ∈ N consider Λk the following lattice in N:

Λk = 2πZ × Γk < N where Γk = Z × Z ×
1
2k

Z < H3(R)

for Γk a lattice in H3(R).
The metric g on N (1) can be induced to the quotient spaces Λk\N . In fact denote also by g the induced metric, for every

γ ∈ Λk one has:

g(Zγ x, Yγ x)γ x = g(dpγ x(Z), dpγ x(Y ))p(γ x)

= g(dpx(Z), dpx(Y ))p(x) = g(Zx, Yx)x

thus the canonical projection p : N → Λk\N is a local isometry.
The following proposition shows an action of H3(R) on the compact nilmanifolds Λk\N which is not explained in [9].

Proposition 2.1. There is an isometric action of H3(R) on the compact nilmanifold Λk\N induced by the action of H3(R) on N
given as follows:

(v′, z ′) · (t, v, z) =


t, v − R(t)v′, z − z ′

−
1
2
vτ JR(t)v′


(4)

where R(t) is the linear map on R2 with matrix given by

R(t) =


cos t − sin t
sin t cos t


t ∈ R. (5)

The proof follows from several computations which can be done by hand: for every (v′, t ′) ∈ H3(R) the map above (4)
defines an isometry on N which can be induced to Λk\N . This gives rise to an action of H3(R) on the nilmanifold Λk\N . In
next sections we shall explain the construction of the action above (see Remark 6).

Remark 1. The action of H3(R) by isometries on the quotient Λk\N is neither induced by the translations on the left nor on
the right on N .

The orbits of the action of H3(R) on N are parametrized by t0 ∈ R:

O(t0,v0,z0) = {(t0, v, z) ∈ R4 v ∈ R2, z ∈ R}

and they are not totally geodesic except for t = 0 (see geodesics in the next section).
On R4 consider the lightlike distribution

Dp = span{e1, e2, e3},

which is involutive. Integral submanifolds for D are given by the orbits Op.

3. A Lorentzian solvable Lie group

Recall that if G is a connected real Lie group, its Lie algebra g is identified with the Lie algebra of left-invariant vector
fields on G. Assume G is endowed with a left-invariant pseudo-Riemannian metric ⟨ , ⟩. Then the following statements are
equivalent (see [18, Chapter 11]):
1. ⟨ , ⟩ is right-invariant, hence bi-invariant;
2. ⟨ , ⟩ is Ad(G)-invariant;
3. the inversion map g → g−1 is an isometry of G;
4. ⟨[X, Y ], Z⟩ + ⟨Y , [X, Z]⟩ = 0 for all X, Y , Z ∈ g;
5. ∇XY =

1
2 [X, Y ] for all X, Y ∈ g, where ∇ denotes the Levi Civita connection;

6. the geodesics of G starting at the identity element e are the one-parameter subgroups of G.

By (3) the pair (G, ⟨ , ⟩) is a pseudo-Riemannian symmetric space. Furthermore by computing the curvature tensor one
has

R(X, Y ) = −
1
4
ad([X, Y ]) for X, Y ∈ g. (6)

Thus the Ricci tensor Ric(X, Y ) = tr(Z → R(Z, X)Y ) is given by

Ric(X, Y ) = −
1
4
B(X, Y )

where B denotes the Killing form on g given by B(X, Y ) = tr(ad(X) ◦ ad(Y )) for all X, Y ∈ g, and tr denotes the usual trace.
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Consider the Lie group homomorphism ρ : R → Aut(H3(R)) which on vectors (v, z) ∈ R2
⊕ R has the form

ρ(t) =


R(t) 0
0 1


where R(t) =


cos t − sin t
sin t cos t


. (7)

Let G denote the simply connected Lie groupwhich is modeled on the smoothmanifold R4, where the algebraic structure
is the resulting from the semidirect product of R and H3(R), via ρ. Thus the multiplication is given by

(t, v, z) · (t ′, v′, z ′) =


t + t ′, v + R(t)v′, z + z ′

+
1
2
vτ JR(t)v′


(8)

with J and R(t) as above. The Lie group G is known as the oscillator group.
A basis of left-invariant vector fields at a point p = (t, x, y, z) is given by

X0(p) = ∂t |p

X1(p) = cos t ∂x|p + sin t ∂y|p +
1
2
(x sin t − y cos t) ∂z


p

X2(p) = − sin t ∂x|p + cos t ∂y|p +
1
2
(x cos t + y sin t) ∂z


p

X3(p) = ∂z |p.

These vector fields verify the Lie bracket relations:
[X0, X1] = X2 [X0, X2] = −X1 [X1, X2] = X3 (9)

giving rise to the Lie algebra of G, namely g. On the usual basis of TpG,

∂t |p, ∂x|p, ∂y|p, ∂z |p


the matrix:

0
1
2
y −

1
2
x 1

1
2
y 1 0 0

−
1
2
x 0 1 0

1 0 0 0


; (10)

defines a bi-invariant metric on G. On canonical coordinates of R4 it corresponds to the pseudo-Riemannian metric:

g = dz dt + dx2 + dy2 +
1
2
(ydx dt − xdy dt),

which coincides with the metric g (1).

Proposition 3.1. The Lorentzian manifold (R4, g) for g the Lorentzian metric in (1) admits simple and transitive actions of both
Lie groups N and G.

As a consequence (N, g) is isometric to (G, g).

In fact one can see that starting at (0, 0, 0, 0) ∈ R4 the translation on the left (byN or G) gives the same Lorentzianmetric
at every point. See [13].

Remark 2. While the metric g is left and right-invariant on G, the metric g is only left-invariant on N . In particular (G, g)
and (N, g) are symmetric spaces: geodesics through the identity are one-parameter subgroups.

Remark 3. The Lie group G is the isometry group of a left-invariant Lorentzian metric on the Heisenberg Lie group H3(R)
(see [19,20]).

3.1. Isometries

Let G be a connected Lie group with a bi-invariant metric, and let Iso(G) denote the isometry group of G. This is a Lie
group when endowed with the compact-open topology. Let ϕ be an isometry such that ϕ(e) = x, for x ≠ e. Then Lx−1 ◦ ϕ is
an isometry which fixes the element e ∈ G. Therefore ϕ = Lx ◦ f where f is an isometry such that f (e) = e. Let F(G) denote
the isotropy subgroup of the identity e of G and let L(G) := {Lg : g ∈ G}, where Lg is the translation on the left by g ∈ G.
Then F(G) is a closed subgroup of Iso(G) and

Iso(G) = L(G)F(G) = {Lg ◦ f : f ∈ F(G), g ∈ G}. (11)
Thus Iso(G) is essentially determined by F(G).

The bi-invariance of the metric on G implies that it is a symmetric space. For locally symmetric spaces one has the
Ambrose–Hicks–Cartan theorem (see for example [18, Theorem 17, Chapter 8]), which states that on a complete locally
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symmetric pseudo-Riemannian manifold M , a linear isomorphism A : TpM → TpM is the differential of some isometry of
M that fixes the point p if and only if it preserves the scalar product that the metric induces into the tangent space and if for
every u, v, w ∈ TpM the following equation holds:

R(Au, Av)Aw = AR(u, v)w.

By applying this to the Lie group G equipped with a bi-invariant metric and whose curvature formula was given in (6)
one gets the next result (see also [21]).

Lemma 3.2. Let G be a simply connected Lie groupwith a bi-invariant pseudo-Riemannianmetric ⟨ , ⟩. Then a linear isomorphism
A : g → g is the differential of some isometry in F(G) if and only if for all X, Y , Z ∈ g, the linear map A satisfies the following two
conditions:
(i) ⟨AX, AY ⟩ = ⟨X, Y ⟩;
(ii) A[[X, Y ], Z] = [[AX, AY ], AZ].

Whenever G is simply connected, every local isometry of G extends to a unique global one. Therefore the full group of
isometries ofG fixing the identity is isomorphic to the group of linear isometries of g that satisfy the conditions of Lemma3.2.
By applying this to our case, one gets the next result (see [19]).

Theorem 3.3. Let G be the simply connected solvable Lie group of dimension four Rnρ H3(R) endowed with the bi-invariant
metric g. Then the group of isometries fixing the identity element F(G) is isomorphic to ({1, −1} × O(2)) n R2.

In particular the connected component of the identity of F(G) coincides with the group of inner automorphisms {χg : G →

G, χg(x) = gxg−1
}g∈G.

The computations (see [19]) show that the differential of an isometry fixing the identity element corresponds toA : g → g

having the following matricial presentation on the basis of left-invariant vector fields {X0, X1, X2, X3}

A =

 ±1 0 0
w Ã 0

∓
1
2
∥w∥

2
∓wτ Ã ±1

 (12)

where w ∈ R2 and Ã ∈ O(2). This gives a group isomorphic to ({1, −1} × O(2)) n R2 for which the identity component
corresponds to those matrices of the form (12) with a00 = a33 = 1 andA ∈ SO(2) = {R(t) : t ∈ R}.

On the other hand, the set of orthogonal automorphisms of g coincide with the set Ad(G), that is, thematrices of the form

A(t, v) =

 1 0 0
Jv R(t) 0

−
1
2
∥v∥

2
−(Jv)τR(t) 1

 , v ∈ R2

being A(t, v) = Ad(t, v, z) for v = (x, y). Since both subgroups are connected and have the same dimension, they must
coincide.

Remark 4. In [13] more features about the isometry group of (G, g)were studied. It was proved that N = R×H3(R) occurs
as a subgroup of Iso(G) but it is not contained in the nilradical of Iso(G). Furthermore the action of the nilradical on G is
not transitive. This shows important differences between the Riemannian situation and the Lorentzian case, even for 2-step
nilpotent Lie groups.

Now we proceed to write explicitly the isometries on G. Since F(G) has four connected components, our aim is to find a
representative isometry on each of them.

From Theorem 3.3, the connected component of the identity

F0(G) = {χg : g ∈ G} ≃ ({1} × SO(2)) n R2
;

where if g = (t0, v0, z0), with v0 = (x0, y0), then for v = (x, y)

χg(t, v, z) =


t, v0 + R(t0)v − R(t)v0, z +

1
2
vτ
0 JR(t0)v −

1
2
vτ
0 JR(t)v0 −

1
2
(R(t0)v)τ JR(t)v0


. (13)

Consider the semidirect product G n G given by conjugation: g · h = χg(h) as above. Then G n G acts by isometries on
the pseudo-Riemannian manifold G, the first factor acts by conjugation χ : G → F0(G) and the second one by translations
on the left L : G → L(G), however this action is not effective. Since

χg ◦ Lh ◦ χg−1 = Lχg (h) (∗)

the action induces the group homomorphism:

G n G → Iso(G) (h, g) → Lg ◦ χh.
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The homomorphism χ : G → F0(G) has the center of G as kernel

Z(G) = {g ∈ G : gxg−1
= x for all x ∈ G}

and one gets

F0(G) ≃ G/Z(G) ≃ SO(2) n R2. (14)

It is not hard to see that the center of G is the subgroup generated by the element of (0, 0, 0, 1). On the other hand the
subgroup L(G) is normal in Iso0(G) and the group homomorphism L : G → L(G) has a trivial kernel.

Thus the connected component of the identity (isometry) is Iso0(G) = (SO(2) n R2) n G.
Let f1, f2, f3 : G → G denote the following diffeomorphisms:

f1(t, v, z) = (−t, Sv, −z), where S(x, y) = (−x, y) (15)
f2(t, v, z) = (−t, R(t)v, −z), (16)
f3(t, v, z) = f1 ◦ f2(t, v, z) = (t, R(t)Sv, z). (17)

Usual computations show that fi is an isometry for i = 1, 2, 3 and they belong to different connected components of the
isometry group. Thus the other three components of F(G) are

F0(G) · f1, F0(G) · f2 and F0(G) · f3
where F0 · fi = {gfi : g ∈ F0(G)}.

3.2. Geodesics

From (10) one can compute the Christoffel symbols of the Levi-Civita connection (cf. [18]) and therefore a curve α(s) =

(t(s), x(s), y(s), z(s)) is a geodesic on G if its components satisfy the second order system of differential equations:
t ′′(s) = 0,
x′′(s) = −t ′(s)y′(s),
y′′(s) = t ′(s)x′(s),

z ′′(s) =
1
2

t ′(s)(x(s)x′(s) + y(s)y′(s)).

On the other hand, if Xe =
3

i=0 aiXi(e) ∈ TeG, then the geodesic α through e with initial condition α′(0) = Xe is the
integral curve of the left-invariant vector field X =

3
i=0 aiXi. Then we should have α′(s) = Xα(s).

• If a0 ≠ 0 the components of α must verify the following system

t ′(s) = a0,
x′(s) = a1 cos a0s − a2 sin a0s,
y′(s) = a1 sin a0s + a2 cos a0s,

z ′(s) =
1
2


a21
a0

+
a22
a0

+ 2a3 −


a22
a0

+
a21
a0


cos a0s


and so the geodesic through e = (0, 0, 0, 0) with initial condition Xe satisfies:

t(s) = a0s,

x(s) =
a1
a0

sin a0s +
a2
a0

cos a0s −
a2
a0

,

y(s) = −
a1
a0

cos a0s +
a2
a0

sin a0s +
a1
a0

,

z(s) =
1
2


a21
a0

+
a22
a0

+ 2a3


s −


a22
a20

+
a21
a20


sin a0s


.

If a0 = 0, it is easy to see that α(s) = (0, a1s, a2s, a3s) is the corresponding geodesic.
Therefore the exponential map exp : g → G is

exp(X) =


a0,

1
a0

(R0(a0)J − J)(a1, a2)τ , a3 +
1
2


a21
a0

+
a22
a0

 
1 −

sin a0
a0


for a0 ≠ 0, while if a0 = 0,

exp(X) = (0, a1, a2, a3) .

The geodesic passing through the point h ∈ G, is the translation on the left by h of the one-parameter subgroup at e, that
is γ (s) = h exp(sX) for exp(sX) given above.
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4. Lorentzian compact manifolds

Let K denote a closed subgroup of G so that G/K is a differentiable manifold endowed with a G-invariant metric, that is,
a metric such that the transformations τh : G/K → G/K given by τh(xK) = hxK are isometries for all h ∈ G and such that
the natural projection p : G → G/K is a pseudo-Riemannian submersion. ThusL(G/K) = {τh : h ∈ G}

is a subgroup of the isometry group Iso(G/K) of the quotient space.
If f ∈ Iso(G) is an isometry of Gwe say that f is fiber preserving if f (gK) = f (g)K for every g ∈ G. If f is a fiber preserving

isometry of G, it induces an isometryf of G/K defined byf (gH) = f (p(g)). Observe that left-translations in G are fiber
preserving and they induce the isometries τh in G/K .

Example 4.1. Let Γ < G be a lattice of a Lie group (G, g) which is equipped with a bi-invariant metric. Then the metric g of
G is induced to both quotients (G/Γ , g) and (Γ \G, g) (by abuse we name the inducedmetrics also by g). Since the inversion
map:G → Gwhich sends h → h−1 is an isometry ofG, one induces thismap to the quotients: xΓ → Γ x−1 and one gets that
G/Γ and Γ \G are isometric compact spaces. This isometry enables the computation of the geometry without distinguishing
these spaces. Furthermore G acts by isometries on G/Γ on the left via the maps τh (as before); G acts isometrically on Γ \G
on the right h · Γ x = Γ xh−1.

Lemma 4.2. Let G be a Lie group with a bi-invariant metric and let Γ be a lattice of G. Then G/Γ admits a G-invariant metric
making it a naturally reductive pseudo-Riemannian space and consequently:
1. p : G → G/Γ is a pseudo-Riemannian covering;
2. The geodesics in G/Γ starting at the point o = p(e) are of the form p(exp tX) with X ∈ g.

See [22, Chapter X, vol. 2], [18].
We can study the isometry group of G/Γ once one has information about the isometry group of G, Iso(G) as follows.

Theorem 4.3. Let G be an arcwise-connected, simply connected Lie group with a left-invariant metric and Γ a discrete subgroup
of G. Then every isometry f of G/Γ is induced to G/Γ by a fiber preserving isometry of G.

Proof. Let f ∈ Iso(G/Γ ) and consider f ◦ p : G → G/Γ . Since G is simply connected, from the Lifting Theorem
(cf. [23, Chapter III, Theorem 4.1]), there exists a differentiable map φ : G → G such that

p ◦ φ = f ◦ p. (18)

From the construction of φ it is not difficult to see that φ is a diffeomorphism of G if f is a diffeomorphism of G/Γ . Since
the projection p : G → G/Γ is a pseudo-Riemannian covering map one gets that φ is a local isometry and therefore an
isometry. From (18) it is immediate that φ is fiber preserving and f is induced by φ. �

Recall that the Lie algebra of the isometry group is obtained from the Killing vector fields. The next lemma states a
relationship between the Killing vector fields on G and those on G/Γ , for a lattice Γ < G.

Lemma 4.4. Let G be a Lie group with a left-invariant metric and Γ a discrete closed subgroup of G. Let X be a Killing vector
field in G/Γ with monoparametric subgroup {Ψt}. Then the horizontal lift X to G of X (with respect to the pseudo-Riemannian
submersion p : G → G/Γ ) is a Killing vector field on G whose monoparametric subgroup {ϕt} verifies

Ψt ◦ p = p ◦ ϕt .

Proof. Let iso(G/Γ ) and iso(G) denote the Lie algebras of the isometry groups of G/Γ and G respectively. Since G and G/Γ
are complete, the Lie algebras iso(G/Γ ) and iso(G) can be identified with the corresponding Lie algebras of Killing vector
fields. Therefore, if Ψ belongs to Iso0(G/Γ ) there exist Killing fields X1, . . . , Xn in G/Γ with monoparametric subgroups
{Ψ i

t } such that

Ψ = Ψ 1
1 ◦ · · · ◦ Ψ n

1 .

Let Xi be the horizontal lift to G of Xi (with respect to the pseudo-Riemannian submersion p : G → G/Γ ), i = 1, . . . , n, and
let {ϕi

t} be the associated monoparametric subgroups. Let f = ϕ1
1 ◦ · · · ◦ ϕn

1 ∈ Iso0(G).
Fix q ∈ G/Γ and let σn be a local section of p : G → G/Γ defined on a neighborhood of q and for each i = 1, . . . , n − 1,

let σi be a local section around qi = Ψ i+1
1 ◦ · · · ◦ Ψ n

1 (q), mapping qi into ϕi+1
1 ◦ · · · ◦ ϕn

1(σn(q)). Then, we must have

Ψ = pϕ1
1σ1 ◦ · · · ◦ pϕn

1σn = p ◦ f ◦ σn.

This decomposition is independent of the choice of the local section and in fact,

Ψ ◦ p = p ◦ f . �

Remark 5. By the previous lemma any isometry in Iso0(G/Γ ) is induced to the quotient by an isometry in Iso0(G).
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We concentrate our attention now to the solvable Lie group G equipped with the bi-invariant metric g given in (10). We
shall construct compact manifolds and study their geometry. Consider the following lattices of G.

Set Γk the lattice of the Heisenberg Lie group H3(R) given by

Γk = Z × Z ×
1
2k

Z k ∈ N.

Every lattice Γk is invariant under the subgroups generated by ρ(2π), ρ(π) and ρ(π
2 ), ρ : R → Aut(H3(R))as in (7).

Consequently we have three families of lattices in G = Rnρ H3(R):

Λk,0 = 2πZ n Γk < G

Λk,π = πZ n Γk < G (19)

Λk,π/2 =
π

2
Z n Γk < G,

so that Λk,0 ▹ Λk,π ▹ Λk,π/2, which induce the solvmanifolds

Mk,0 = Λk,0\G ≃ G/Λk,0,

Mk,π = Λk,π\G ≃ G/Λk,π ,

Mk,π/2 = Λk,π/2\G ≃ G/Λk,π/2.

(20)

Since the subgroups Λk,i are not pairwise isomorphic (see for instance [24]), they determine non-diffeomorphic
solvmanifolds (see for instance [25]).

Observe that the action of ρ(2π) is trivial, so

• Λk,0 = 2πZ × Γk (a direct product) and
• Mk,0 = G/Λk,0 is diffeomorphic to Λk,0\G ≃ Λk\N ≃ S1 × H3(R)/Γk, a Kodaira–Thurston manifold (see more details

in [24]).

Moreover every compact space in the family Mk,0 admits a symplectic but non-Kähler structure, but any compact space
Mk,i i = π, π/2 admits no symplectic structure since the second Betty number vanishes (see [24]).

Proposition 4.5. The compact solvmanifolds Mk,i for k ∈ N and i = 0, π, π/2 are pseudo-Riemannian naturally reductive
spaces, hence complete.

The solvable Lie group G = R n H3(R) acts by isometries on each of the compact spaces Mk,i for k ∈ N and i = 0, π, π/2. As
a consequence the Heisenberg Lie group H3(R) < G also acts on each of the compact spaces Mk,i for k ∈ N and i = 0, π, π/2.

Both actions are locally faithful.

Remark 6. The action of H3(R) on Λk\N of Proposition 2.1 is induced by the right action of G onMk,0 ≃ Λk,0\G ≃ Λk\N:

(v′, z ′) · Λk,0(t, v, z) = Λk,0((t, v, z)(0, v′, z ′)−1)

where on the right side we are considering themultiplicationmap of G. Since themetric is bi-invariant the right-translation
is also an isometry.

4.1. Isometries of the compact spaces Mk,s

Our goal now is to study the isometry groups of the compact spacesMk,s.
Notice that all translations on the left Lh for h ∈ G are fiber preserving isometries. Direct computations show that the

only isometries in F(G) that are fiber preserving are the inner homomorphisms χh with h ∈ NG(Λk,s), the normalizer of Λk,s
in G.

Lemma 4.6. Consider the lattices Λk,s defined in (19), and set Mk,s = G/Λk,s for every k ∈ N.

• The only isometries in F(G) that are fiber preserving are the inner homomorphisms χh with h ∈ NG(Λk,s).
• The normalizers in G of these lattices are given by

1. NG(Λk,0) =
π
2 Z n ( 1

2kZ ×
1
2kZ × R),

2. NG(Λk,π ) =
π
2 Z n ( 1

2Z ×
1
2Z × R),

3. Set W = {(m, n) ∈ Z2
: m ≡ n (mod 2)} then

NG


Λk, π

2


=


π

2
Z n (W × R) for k = 1,

π

2
Z n


1
2

W × R


for k ≥ 2.
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Proof. Let Λk,0 be the lattice of G given in (19). Let g = (t0, v0, z0) ∈ G with v0 = (x0, y0) ∈ R2, be an element in the nor-
malizer of Λk,0. Let γ = (t, v, z) ∈ Λk,0 where v = (x, y). Thus from the formulas in (13) the condition χh(γ ) ∈ Λk,0 gives

v0 + R(t0)v − R(t)v0 ∈ Z × Z (21)

z +
1
2
vt
0JR(t0)v −

1
2
vt
0JR(t)v0 −

1
2
(vtR(−t0)JR(t)v0) ∈

1
2k

Z. (22)

Since t ∈ 2πZ, we have R(t) ≡ Id, thus R(t0)v ∈ Z × Z for v ∈ Z × Z which implies

t0 =
π

2
r for some r ∈ Z. (23)

Now using this in (22) one gets

v0 ∈
1
2k

Z ×
1
2k

Z. (24)

Canonical computations show that g = (π
2 r,

1
2kp,

1
2kq, s) ∈ NG(Λk,0) for all r, p, q ∈ Z and s ∈ R.

ForΛk,π an element h = (t0, v0, z0) ∈ Gwhich belongs toNG(Λk,π )must satisfy Eqs. (21) and (22). Observe that elements
of the form γ = (2πs,m, n, 1

2k z) ∈ Λk,π . Therefore hmust satisfy the conditions above (23) and (24).
For t = πs with s ≡ 1 (mod 2) the condition (21) implies that v0 ∈

1
2Z ×

1
2Z. Finally usual computations give

NG(Λk,π ) =
π
2 Z n ( 1

2Z ×
1
2Z × R).

For the lattice Λk, π
2
notice that we can use conditions obtained for the other two families of lattices. Thus assume that

h ∈ NG(Λk, π
2
) has the form g = (π

2 r,
1
2p,

1
2q, z0) for r, p, q ∈ Z, z0 ∈ R. Thus we should analyze Eqs. (21) and (22) for

t ∈ ±
π
2 + 2πZ.

Condition (21) implies p ≡ q (mod 2). Imposing this together with condition (22) accounts to v0 ∈
1
2 (Z × Z) for k ≥ 2

or v0 ∈ Z × Z for k = 1. �

Once one knows which isometries of G are fiber preserving, to study the isometry group of Mk,i one should determine,
among others, which of these isometries act effectively onMk,i for i = 0, π, π/2.

Thus to determine the isometry group of the compact space Mk,s we need to find the kernel of the following
homomorphisms:χ : NG(Λk,s) → Iso(Mk,s), h → χhτ : G →L(Mk,s), h → τh,

whereχh(gΛk,s) = χ(g)Λk,s and τh(gΛk,s) = hgΛk,s.
SetF(Mk,s) := Im(χ) andL(Mk,s) := Im(τ). Then, by the Isomorphism Theorem one obtainsF(Mk,s) ≃ NG(Λk,s)/ ker(χ) (25)

where ker(χ) = {h ∈ NG(Λk,s) : h = (2π l, 0, r) with l ∈ Z, r ∈ R} and NG(Λk,s) as in Lemma 4.6; andL(Mk,s) ≃ G/ ker(τ) (26)

where ker(τ) = {h ∈ G : h = (2π l, 0, z) with l ∈ Z, z ∈
1
2kZ}.

Theorem 4.7. Let Mk,s denote the solvmanifolds of dimension four as in (20) equippedwith the naturally reductivemetric induced
by the bi-invariant metric of G given by g (1). Then the isometry group of Mk,s is given by

Iso(Mk,s) =F(Mk,i) ·L(Mk,s)

whereF(Mk,i) is the group in (25) andL(Mk,s) is the group in (26).
Moreover

• L(Mk,s) is a normal subgroup and
• N(Mk,s) ∩L(Mk,s) = {τZ ◦ χγ , where Z := (0, 0, 0, z) z ∈ R, γ ∈ Λk,s}.

Remark 7. Notice that Iso0(Mk,i) has G as universal covering.
Also note that R × H3(R) does not act by isometries on the quotientsMk,i for any k, i.

Since the projection of the left-invariant vector field X0 − X3 to Mk,s gives a timelike Killing vector field one gets the
following fact.

Corollary 4.8. All of the compact spaces Mk,s are stationary.

Remark 8. Theorem 4.1 in [8] states that when the identity component of the isometry group is non-compact and it has
some timelike orbit, then it must contain a non-trivial factor locally isomorphic to SL(2, R) or to an oscillator group.
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4.2. Geodesics on Mk,s

Our aim here is to study the geodesics on the quotient spaces Mk,s = G/Λk,s for s = 0, π, π/2. Since Mk,s is a naturally
reductive space the geodesics starting at p(e) are precisely the projections of the geodesics of G through the identity element
e (see Chapter 11 [18]). Any other geodesic of G is the translation on the left of a geodesic through e, giving rise to every
geodesic on the quotient.

Let γ̄ (t) = p ◦ γ (t) denote a curve on Mk,s with initial velocity
v̄ = γ̄ ′(0) = dpe(γ ′(0)).

The tangent vector v̄ is called
• lightlike or null if it has null norm.
• spacelike if it has positive norm.
• timelike if it has negative norm.

The curve γ̄ is called lightlike (resp. spacelike, timelike) if its tangent vector is lightlike (resp. spacelike, timelike) at every
point.

Observe first that a tangent vector X of G of the form X =
3

i=0 aiXi for the left-invariant vector fields Xi, is null if it
satisfies the condition:

a21 + a22 + 2a0a3 = 0, (27)

while other tangent vectors on G satisfying a21 + a22 + 2a0a3 > 0 or < 0 are either spacelike or timelike respectively.
Let α denote a curve on G. Its projection will be denoted by ᾱ = p ◦ α. Observe that ᾱ is self-intersecting if and only if

there exist t0, t1 ∈ R such that α(t1)−1α(t0) ∈ Λk,s.

Lemma 4.9. Let G denote a Lie group, let K < G be a subgroup of G and α : R → G a one-parameter subgroup. Denote by
p : G → G/K the canonical projection. Then, either p ◦ α : R → G/K is injective, or it is periodic.
Proof. Assume that there exist t0, t1 ∈ R such that ᾱ(t0) = ᾱ(t1). Thus α(t1)−1α(t0) ∈ K . Since α is a one-parameter
subgroup it holds α(t0 − t1) ∈ K . Set T = t1 − t0 then α(s + T ) = α(s)α(T ) and so ᾱ(t + T ) = ᾱ(t) for all t ∈ R. �

Corollary 4.10. Let G/K be a naturally reductive pseudo-Riemannian space. Then every self-intersecting geodesic in G/K is
periodic.

The next step is to apply this result to study periodic geodesics on the quotient spacesMk,s, s = 0, π, π/2. Geodesics on
Mk,s are induced by one-parameter subgroups of G since the metric of G is bi-invariant.

Indeed a geodesic α on G through ewith tangent vector X =
3

i=0 aiXi gives rise to a closed geodesic onMk,0 if and only
if there exists T ∈ R such that α(T ) ∈ Λk,0, which
• for a0 ≠ 0 gives the following conditions

• a0T ∈ 2πZ

• a−1
0 (R(a0T )J − J)(a1, a2)t ∈ Z × Z

•


a21 + a22
2a0

+ a3


T −

a21 + a22
a20

sin(a0T ) ∈
1
2k

Z.

(28)

Notice that if the first condition holds then R(a0T ) is the identity map so that R(a0T )J − J = 0 and the second condition
is satisfied for all a1, a2 ∈ R. Since a0T ∈ 2πZ then sin(a0T ) = 0 and the third condition reduces to

∥X∥
2

2a0
T =


a21 + a22
2a0

+ a3


T ∈

1
2k

Z. (29)

Hence if a0 ≠ 0 the condition of p ◦ α being closed onMk,0 reduces to (29).
For spacelike or timelike geodesics, that is ∥X∥

2 > 0 or ∥X∥
2 < 0 respectively, where ∥X∥

2
= ⟨X, X⟩ closed geodesics

onMk,0 are determined by the conditions

a0T = 2π l and
∥X∥

2

2a0
T =

m
2k

form, l ∈ Z.

• For a0 = 0 notice the geodesic ᾱ is closed if there exists T ∈ R such that

(a1T , a2T )t ∈ Z × Z

a3T ∈
1
2k

Z.
(30)

Thus on G a null geodesic is α(ν) = (0, 0, 0, a3ν) which gives rise to a periodic geodesic onMk,s if and only if a3T ∈
1
2kZ.

Therefore
– every lightlike geodesic onMk,0 is periodic.
– there are periodic and injective timelike and spacelike geodesics onMk,0.
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Theorem 4.11. Let Mk,i denote the solvmanifolds as in (20).

• Every null geodesic is periodic on Mk,i for i = 0, π, π/2.
• There are periodic and injective timelike and spacelike geodesics on Mk,i for i = 0, π, π/2.

For the other families of lattices Λk,π and Λk,π/2 one should modify the equations in (28) and (30) to get the condition
for ᾱ to be periodic. Analogous arguments prove all the assertions of the theorem. One should notice that the analysis in
these cases gives some extra geodesics once a0T = πm or a0T =

πm
2 for somem ∈ Z.

Remark 9. Every compact manifoldMk,i is even-dimensional and orientable. Compare with Theorem 2 in [26].
The Ricci tensor on G verifies

Ric(X, X) =
1
2
a20 ≥ 0 for X = a0∂t + V , V ∈ span{∂z, ∂x, ∂y}

and since p is a local isometry, G so as their quotients satisfy the lightlike and timelike convergence conditions.
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